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Open Problem: Kernel methods on manifolds and metric spaces
What is the probability of a positive definite geodesic exponential kernel?
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Abstract

Radial kernels are well-suited for machine learning over general geodesic metric spaces, where
pairwise distances are often the only computable quantity available. We have recently shown that
geodesic exponential kernels are only positive definite for all bandwidths when the input space has
strong linear properties. This negative result hints that radial kernel are perhaps not suitable over
geodesic metric spaces after all. Here, however, we present evidence that large intervals of band-
widths exist where geodesic exponential kernels have high probability of being positive definite
over finite datasets, while still having significant predictive power. From this we formulate conjec-
tures on the probability of a positive definite kernel matrix for a finite random sample, depending
on the geometry of the data space and the spread of the sample.

Keywords: Kernel methods, geodesic metric spaces, geodesic exponential kernel, positive defi-
niteness, curvature, bandwidth selection.

1. Introduction

In a number of applications, learning can be improved by incorporating domain-specific knowl-
edge that constrains the data to reside on a nonlinear subspace such as a Riemannian manifold.
Examples include diffeomorphism groups in computational anatomy (Grenander and Miller, 1998)
and probability distributions under the Fisher information metric (Amari and Nagaoka, 2000). In
such nonlinear spaces, the geodesic distance is often the only computable quantity and methods that
solely depend on pairwise distances are therefore practical. Manifold statistics (Fletcher and Joshi,
2004) are popular for such data, but in practice often suffer from poor numerical precision and do
not even scale to medium-size data sets. Kernel methods (Scholkopf and Smola, 2002) provide an
attractive alternative, where the most common kernel is the geodesic exponential kernel:

k(.f,.%'/) = exp (—)\dq(.%',:(}/)) y g€ R—i—v (1)

where d is the geodesic distance metric defined by shortest path length in X. These kernels can be
defined on any geodesic data space, not just manifolds.

We have shown (Feragen et al., 2015) that Gaussian kernels (¢ = 2) are only PD for all ) if the
metric space is flat in the sense of Alexandrov (Bridson and Haefliger, 1999). Similar restrictions
are shown for other ¢. This suggests that geodesic exponential kernels are not generally useful
in nonlinear spaces. Below, however, we show that for finite datasets, there exist intervals of
bandwidths A for Eq. 1 for which kernel matrices are PD. Moreover, in our simulations, these
intervals contain bandwidths with good predictive power. This raises a series of open questions.
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2. State-of-the-art

There is a vast literature on generalizing kernels to non-Euclidean data spaces, roughly falling into
three approaches:

* The nonlinear data space X is linearized and a kernel is designed over the linear approxima-
tion space (Courty et al., 2012; Jaakkola and Haussler, 1998). This discards the nonlinear
structure of X and thereby the domain specific knowledge it encodes.

* X is embedded in a higher-dimensional Euclidean space, over which the kernel is designed (Ha-
randi et al., 2014; Jayasumana et al., 2014). Since the distance measure in the embedding
space can arbitrarily depart from the geodesic distance, this approach also discards the do-
main specific knowledge that X was designed to capture.

* A kernel is designed directly on X through the geodesic distance, e.g. using Eq. 1 (Chapelle
et al., 1999; Jayasumana et al., 2015, 2013; Harandi and Salzmann, 2015). The fact that
such kernels are not PD (Feragen et al., 2015) for all bandwidths is ignored, and the analysis
proceeds as if the kernel were, in fact, PD. This strategy has recently attracted wide attention
in computer vision.

The first two approaches discard the domain specific knowledge that the data space was supposed
to encode, while the third approach violates the fundamental assumption made by kernel methods.
As a consequence, the following statistical analysis is not guaranteed to be well-defined.

3. Open Problems

Losing the ”for all A > 0” condition appears detrimental, because we lose the ability to freely train
the bandwidth parameter A. In practice, however, we find that there often exist large intervals of A
parameters that give PD kernel matrices for concrete finite datasets. Fig. 1 shows two simulation
studies of Gaussian kernels (¢ = 2 in Eq. 1) on the unit sphere. On the left, we test PD’ness by
plotting the minimum eigenvalue of the kernel matrix K = [k(x;, z;)];;, which is positive if and
only if K is PD (Scholkopf and Smola, 2002). We observe a ”PD interval” of A parameters. This
can be explained theoretically: When A — oo, the kernel matrix approaches the identity matrix,
whose minimum eigenvalue is 1. As the “minimum eigenvalue” function is continuous, there must
be some )\’ such that the kernel matrix K is PD for A > ). On the right panel of Fig. 1, the blue
curve estimates how reliable this interval is by sampling 200 points from two distributions on the
unit sphere, computing their Gaussian kernel matrix, and checking for PD’ness for a range of A
parameters. We repeat this 300 times and plot the percentage of PD matrices for each A value. Note
that the percentage quickly approaches 100.
These simulations suggest that our current theory must be refined, and we conjecture:

Conjecture 1 There exist conditions on the geometry of the data space X, the spread of the data,
the exponent q < 2, the PD range of \ parameters and the sample size N such that for a random
sample {z1,...,zn} C X, and a fixed € > 0, the kernel matrix [exp(—Ad?(x;, x;))]i; is PD with
probability 1-¢.

Conjecture 1 would be very powerful as it allows optimizing A for specific tasks, and gives insight
into the expected generalizability of a PD interval to an unseen test set. Moreover, we conjecture:
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Fig. 1 We show two simulation experiments on the unit sphere. Left: The minimal eigenvalue of the
geodesic Gaussian kernel matrix for 100 uniformly sampled data points. Right: We compute the kernel
matrix for a dataset with 100 points drawn from each of the Gaussian distributions N ([1/2,1/2,1/2],I) and
N (=[Y/2,1/2,1/2], I) projected onto the unit sphere. This experiment is repeated 300 times for each of a
range of bandwidths )\, and we report the percentage of PD geodesic Gaussian kernel matrices (blue), and
the average cross-validated classification accuracy with a support vector machine among those kernel ma-
trices that are PD (yellow). For reference, the expected classification accuracy for the optimal separating
hyperplane of the generating distributions are shown in red.

Conjecture 2 The PD range of A parameters depends on the geometry of the data space X :

a) The PD range depends on the curvature of X, defined in the C AT (k) sense (Bridson and
Haefliger, 1999).

b) The PD range depends on the distortion of the metric of the nonlinear data space under a
low-distortion embedding into Euclidean spaces.

Conjecture 2, along with simple tests for curvature and recent results on embeddability into Eu-
clidean spaces (Sidiropoulos and Wang, 2015; Matousek and Sidiropoulos, 2010), would lead to
simple, testable conditions for positive definiteness, or for the size of the positive definite range of
A parameters. In particular, Conjecture 2b may lead to simple tests for whether lacking PD’ness is

a general property of the data, or caused by a select few outliers.

If the bounding )\ is too large, then all PD kernel matrices are very close to I and therefore
non-informative. However, our second simulation shown by the yellow curve in Fig. 1 shows that
there are bandwidth parameters that simultaneously lead to a high probability of a PD kernel matrix,
and a close to optimal classification accuracy.

Conjecture 3 The PD range of X parameters is useful, and its usefulness depends on the power q.

Clearly there is a dependence on ¢ because, as when ¢ — 0, the kernel matrix approaches a matrix
of ones, which is non-informative. Conjecture 3 seeks to quantify this dependence.

What sets these conjectures apart from the current mindset is the formulation in terms of prob-
ability of positive definiteness in place of a deterministic worst-case analysis. We believe this prob-
abilistic analysis will be intimately connected with the geometry of the data space.
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