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ABSTRACT

Stability guarantees are crucial when ensuring that a fully autonomous robot does
not take undesirable or potentially harmful actions. Unfortunately, global stability
guarantees are hard to provide in dynamical systems learned from data, especially
when the learned dynamics are governed by neural networks. We propose a
novel methodology to learn neural contractive dynamical systems, where our
neural architecture ensures contraction, and hence, global stability. To efficiently
scale the method to high-dimensional dynamical systems, we develop a variant
of the variational autoencoder that learns dynamics in a low-dimensional latent
representation space while retaining contractive stability after decoding. We further
extend our approach to learning contractive systems on the Lie group of rotations
to account for full-pose end-effector dynamic motions. The result is the first highly
flexible learning architecture that provides contractive stability guarantees with
capability to perform obstacle avoidance. Empirically, we demonstrate that our
approach encodes the desired dynamics more accurately than the current state-of-
the-art, which provides less strong stability guarantees.

1 STABILITY IN ROBOT LEARNING

Figure 1: Robot motion executed via a neural
contractive dynamical system (NCDS).

Deploying a fully autonomous robot requires guarantees
of stability to ensure that the robot does not perform un-
wanted, potentially dangerous, actions. Consider the robot
in Fig. 1, which is trained from demonstrations (black
dots) to execute a sinusoidal motion (orange). If the robot
is pushed away (red perturbation) from its planned tra-
jectory, then it should still be guaranteed to reproduce a
motion similar to the demonstration pattern (blue). Man-
ually designed robot movements could achieve such sta-
bility guarantees, but even skilled engineers struggle to
hand-code highly dynamic motions (Billard et al., 2016).
In contrast, learning robot dynamics from demonstrations
has shown to be an efficient and intuitive approach for
encoding highly dynamic motions into a robot’s repertoire
(Schaal et al., 2003). Unfortunately, these learning-based
approaches often struggle to ensure stability as they rely
on the machine learning model to extrapolate in a con-
trolled manner. In particular, it has turned out to be surprisingly difficult to control the extrapolating
behavior of neural network models (Xu et al., 2021), which hampers stability guarantees.

Stability is commonly ensured through asymptotic or contraction guarantees. Asymptotic stability
ensures that all motions converge to a fixed point (known as the system’s attractor) (Khansari-Zadeh
& Billard, 2011; 2014; Neumann & Steil, 2015; Zhang et al., 2022b;a). This is suitable when the
only requirement is that the robot eventually reaches a certain configuration, e.g. its end-effector
is at a specific goal position. Many tasks, however, require the robot to dynamically follow desired
trajectories, e.g. in flexible manufacturing, human-robot interaction, or in entertainment settings.

1



Published as a conference paper at ICLR 2024

In these cases, asymptotic stability is insufficient. A stronger notion of stability is provided by
contraction theory (Lohmiller & Slotine, 1998), which ensures that all the path integrals regardless
of their initial state incrementally converge over time. Unfortunately, the mathematical requirements
of a contractive system are difficult to ensure in popular neural network architectures.

Existing contractive learning methods focus on low-capacity models fitted under contraction con-
straints. Ravichandar et al. (2017) and Ravichandar & Dani (2019) both use Gaussian mixture models
to encode the demonstrations and model the dynamical system with Gaussian mixture regression
(GMR), which is fitted under contraction constraints. Blocher et al. (2017) also use GMR to model
the system dynamics but instead include a stabilizing control input that guarantees a local contractive
behavior. Likewise, Sindhwani et al. (2018) model the dynamical system with a well-crafted kernel,
under which optimization remains convex w.r.t. contraction constraints. Note that the above works
impose the contraction constraints during optimization, which complicates model training.

Developing high-capacity (deep) models is difficult as off-the-shelf neural network architectures
provide no stability guarantees. Instead, current approaches split the task into two steps: first, learn
a non-contractive dynamical system, and then estimate a Riemannian metric (Sec. 2.1), parametrized
by a neural network, under which the system becomes contractive (Tsukamoto et al., 2021a; Dawson
et al., 2023). The approach, thus, requires training two separate networks, which is impractical and
comes with additional challenges. For example, Sun et al. (2020) learns the metric by regularizing
towards a contractive system, such that stability can only be ensured near training data. Alternatively,
Tsukamoto & Chung (2021) develop a convex optimization problem for learning the metric from
sampled optimal metrics. Unfortunately, accessing such optimal metrics is a difficult problem in
itself. Additionally, Kozachkov et al. (2022) introduce a network of small and simple recurrent neural
networks with built-in contractive behavior as an alternative to a single, larger network.

In this paper, we propose the neural contractive dynamical system (NCDS) which is the first neural
network architecture that is guaranteed to be contractive for all parameter values. This implies that
NCDS can easily be incorporated into existing pipelines to provide stability guarantees and then
trained using standard unconstrained optimization. As demonstration data may be high dimensional,
we secondly propose an injective variant of the variational autoencoder that allows learning low-
dimensional latent dynamics, while ensuring contraction guarantees for the decoded dynamical
system. Thirdly, as most complex robotic tasks involve full-pose end-effector movements (including
orientation dynamics), we extend our approach to cover the Lie group SO(3). Finally, we show that
NCDS can trivially be modified to avoid (dynamic) obstacles without sacrificing stability guarantees.

2 LEARNING CONTRACTIVE VECTOR FIELDS

Our ambition is a flexible neural architecture, which is guaranteed to always be contractive. We,
however, first introduce contraction theory as this is a prerequisite for our design.
2.1 BACKGROUND: CONTRACTIVE DYNAMICAL SYSTEMS

To begin with, assume an autonomous dynamical system ẋt = f(xt), where xt ∈ RD is the
state variable, f : RD → RD is a C1 function and ẋt = dx/dt denotes temporal differentiation.
As illustrated in Fig. 1, contraction stability ensures that all solution trajectories of a nonlinear
system f incrementally converge regardless of initial conditions x0, ẋ0, and temporary perturbations
(Lohmiller & Slotine, 1998). The system stability can, thus, be analyzed differentially, i.e. we can ask
if two nearby trajectories converge to one another. Specifically, contraction theory defines a measure
of distance between neighboring trajectories, known as the contraction metric, in which the distance
decreases exponentially over time (Jouffroy & I. Fossen, 2010; Tsukamoto et al., 2021b).

Formally, an autonomous dynamical system yields the differential relation δẋ = J(x)δx, where
J(x) = ∂f/∂x is the system Jacobian and δx is a virtual displacement (i.e., an infinitesimal spatial
displacement between the nearby trajectories at a fixed time). Note that we have dropped the time
index t to limit notational clutter. The rate of change of the corresponding infinitesimal squared
distance δx⊤δx is then,

d

dt
(δx⊤δx) = 2δx⊤δẋ = 2δx⊤J(x)δx. (1)

It follows that if the symmetric part of the Jacobian J(x) is negative definite, then the infinitesimal
squared distance between neighboring trajectories decreases over time. This is formalized as:
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Definition 1 (Contraction stability (Lohmiller & Slotine, 1998)) An autonomous dynamical sys-
tem ẋ = f(x) exhibits a contractive behavior if its Jacobian J(x) = ∂f/∂x is negative definite, or
equivalently if its symmetric part is negative definite. This means that there exists a constant τ > 0
such that δx⊤δx converges to zero exponentially at rate 2τ . This can be summarized as,

∃ τ > 0 s.t. ∀x,
1

2

(
J(x) + J(x)⊤

)
≺ −τI ≺ 0. (2)

The above analysis can be generalized to account for a more general notion of distance of the form
δx⊤M(x)δx, where M(x) is a positive-definite matrix known as the (Riemannian) contraction
metric (Tsukamoto et al., 2021b; Dawson et al., 2023). In our work, we learn a dynamical system
f so that it is inherently contractive since its Jacobian J(x) fulfills the condition given in Eq. 2.
Consequently, it is not necessary to specifically learn a contraction metric as it corresponds to an
identity matrix. For our purposes, we, thus, define contraction guarantees following Eq. 2.

2.2 NEURAL CONTRACTIVE DYNAMICAL SYSTEMS (NCDS)

From Definition 1, we seek a flexible neural network architecture, such that the symmetric part of
its Jacobian is negative definite. We consider the dynamical system ẋ = f(x), where x ∈ RD
denotes the system’s state and f : RD → RD is parametrized by a neural network. It is not obvious
how to impose a negative definiteness constraint on a network’s Jacobian without compromising its
expressiveness. To achieve this, we first design a neural network Ĵf representing the Jacobian of our
final network. This produces matrix-valued negative definite outputs. The final neural network will
then be formed by integrating the Jacobian network. Specifically, we define the Jacobian as,

Ĵf (x) = −(Jθ(x)
⊤Jθ(x) + ϵ ID), (3)

where Jθ : RD → RD×D is a neural network parameterized by θ, ϵ ∈ R+ is a small positive constant,
and ID is an identity matrix of size D. Intuitively, Jθ can be interpreted as the (approximate) square
root of Ĵf . Clearly, Ĵf is negative definite as all eigenvalues are bounded from above by −ϵ.

Next, we take inspiration from Lorraine & Hossain (2019) and integrate Ĵf to produce a function
f , which is implicitly parametrized by θ, and has Jacobian Ĵf . The fundamental theorem of
calculus for line integrals tells us that we can construct such a function by a line integral of the form

Figure 2: The learned vector field
(grey) and demonstrations (black).
Yellow and green trajectories
show path integrals starting from
demonstration starting points and
random points, respectively.

ẋ = f(x) = ẋ0 +

∫ 1

0

Ĵf (c (x, t,x0)) ċ(x, t,x0)dt, (4)

c(x, t,x0) = (1− t)x0 + tx and ċ(t,x0,x) = x− x0, (5)
where x0 and ẋ0 = f(x0) represent the initial conditions of the
state variable and its first-order time derivative, respectively. The
input point x0 can be chosen arbitrarily (e.g. as the mean of the
training data or it can be learned), while the corresponding function
value ẋ0 has to be estimated alongside the parameters θ. There-
fore, given a set of demonstrations denoted as D = {xi, ẋi}, our
objective is to learn a set of parameters θ along with the initial
conditions x0 and ẋ0, such that the integration in Eq. 4 enables
accurate reconstruction of the velocities ẋi given the state xi.

The integral in Eq. 4 is similar to neural ordinary differential
equations (Chen et al., 2018b), with the subtle difference that it
is a second-order equation as the outcome pertains to the velocity
at state x. We can, thus, view this system as a second-order neural ordinary equation (Norcliffe
et al., 2021) and solve it using off-the-shelf numerical integrators. The resulting function f will have
a negative definite Jacobian for any choice of θ and is consequently contractive by construction.
In other words, we can control the extrapolation behavior of the neural network that parametrizes
our dynamical system f via the negative-definiteness of Ĵf (x). We call this the neural contractive
dynamical system (NCDS), and emphasize that this approach has two key benefits: (1) we can use
any smooth neural network Jθ as our base model, and (2) training can then be realized using ordinary
unconstrained optimization, unlike previous approaches. Figure 2 shows an example NCDS vector
field, which is clearly highly flexible even if it guarantees contractive stability.
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3 LEARNING LATENT CONTRACTIVE DYNAMICS

Learning highly nonlinear contractive dynamical systems in high-dimensional spaces is difficult.
These systems may exhibit complex trajectories with intricate interdependencies among the system
variables, making it challenging to capture the underlying dynamics. In the experiments, we show
that NCDS works very well for low-dimensional problems, but when only limited data is available,
the approach becomes brittle in higher dimensions. A common approach in such cases is to first
reduce the data dimensionality, and work as before in the resulting low-dimensional latent space
(Chen et al., 2018a; Hung et al., 2022; Beik-Mohammadi et al., 2021). The main difficulty is that
even if the latent dynamics are contractive, the associated high-dimensional dynamics need not be.
This we solve next.

3.1 BACKGROUND: DEEP GENERATIVE MODELS

Variational autoencoders (VAEs). The main goal of deep generative models is to approximate
the true underlying probability density p(x) given a finite set of training data in an ambient space X,
by considering a lower-dimensional latent space Z. In particular, the variational autoencoder (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014) is a latent variable model, often specified through a
prior p(z) = N(z | 0, Id) where z ∈ Z, and a likelihood pϕ(x|z) = N(x | µϕ(z), IDσ2

ϕ(z)) with
x ∈ X. Typically, the mean and the variance of the likelihood are parametrized using deep neural
networks µϕ : Z → X and σ2

ϕ : Z → RD+ with parameters ϕ, and ID and Id being identity matrices
of size D and d, respectively. These neural networks are trained by maximizing the evidence lower
bound (ELBO) (Kingma & Welling, 2014). The latent variable z is approximated using a variational
encoder µξ(x) and is often interpreted as the low-dimensional representation of an observation x.
In our work, we use a VAE to provide low-dimensional representations of individual points along
observed trajectories in order to learn a latent contractive dynamical system.

Injective flows. A limitation of VAEs is that their marginal likelihood is intractable and we have
to rely on a bound. When dim(X) = dim(Z), we can apply the change-of-variables theorem to
evaluate the marginal likelihood exactly, giving rise to normalizing flows (Tabak & Turner, 2013).
This requires the decoder to be diffeomorphic, i.e. a smooth invertible function with a smooth inverse.
In order to extend this to the case where dim(X) > dim(Z), Brehmer & Cranmer (2020) proposed
an injective flow, which implements a zero-padding operation (see Sec.3.2 and Equation 6) on the
latent variables alongside a diffeomorphic decoder, such that the resulting function is injective.

3.2 LATENT NEURAL CONTRACTIVE DYNAMICAL SYSTEMS

As briefly discussed above, we want to reduce data dimensionality with a VAE, but we further
require that any latent contractive dynamical system remains contractive after it has been decoded
into the data space. To do so, we can leverage the fact that contraction is invariant under coordinate
changes (Manchester & Slotine, 2017; Kozachkov et al., 2023). This means that the transformation
between the latent and data spaces may be generally achieved through a diffeomorphic mapping.

Theorem 1 (Contraction invariance under diffeomorphisms (Manchester & Slotine, 2017))
Given a contractive dynamical system ẋ = f(x) and a diffeomorphism ψ applied on the state
x ∈ RD, the transformed system preserves contraction under the change of coordinates y = ψ(x).
Equivalently, contraction is also guaranteed under a differential coordinate change δy = ∂ψ

∂x δx.

Following Theorem 1, we learn a VAE with an injective decoder µ : Z → X. Letting M = µ(Z)
denote the image of µ, then µ is a diffeomorphism between Z and M, such that Theorem 1 applies.
Geometrically, µ spans a d-dimensional submanifold of X on which the dynamical system operates.

Here we leverage the zero-padding architecture from Brehmer & Cranmer (2020) for the decoder.
Formally, an injective flow µ : Z → X learns an injective mapping between a low-dimensional latent
space Z and a higher-dimensional data space X. Injectivity of the flow ensures that there are no
singular points or self-intersections in the flow, which may compromise the stability of the system
dynamics in the data space. The injective decoder µ is composed of a zero-padding operation on the
latent variables followed by a series of K invertible transformations gk. This means that,

µ = gK ◦ · · · ◦ g1 ◦ Pad, (6)
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where Pad(z) = [z1 · · · zd 0 · · · 0]⊤ represents a D-dimensional vector z with additional D − d
zeros. We emphasize that this decoder is an injective mapping between Z and µ(Z) ⊂ X, such that a
decoded contractive dynamical system remains contractive.

Specifically, we propose to learn a latent data representation using a VAE, where the decoder mean
µξ follows the architecture in Eq. 6. Empirically, we have found that training stabilizes when
the variational encoder takes the form qξ(z|x) = N(z | µ∼1

ξ (x), Idσ2
ξ(x)), where µ∼1

ξ is the
approximate inverse of µξ given by,

µ∼1
ξ = Unpad ◦ g−1

1 ◦ · · · ◦ g−1
K , (7)

where Unpad : RD → Rd removes the last D−d dimensions of its input as an approximation to the
inverse of the zero-padding operation. We emphasize that an exact inverse is not required to evaluate
a lower bound of the model evidence.

It is important to note that the state x solely encodes the positional information of the system,
disregarding the velocity ẋ. In order to decode the latent velocity ż into the data space velocity
ẋ, we exploit the Jacobian matrix associated with the decoder mean function µξ, computed as
Jµξ

(z) = ∂µξ/∂z. This enables the decoding process formulated as below,

ẋ = Jµξ
(z)ż. (8)

The above tools let us learn a contractive dynamical system on the latent space Z, where the
contraction is guaranteed by employing the NCDS architecture (Sec. 2.2). Then, the latent velocities1

ż given by such a contractive dynamical system can be mapped to the data space X using Eq. 8.
Assuming the initial robot configuration x0 is in M (i.e., x0 = f(z0)), the subsequent motion follows
a contractive system along the manifold. If the initial configuration x0 is not in M, the encoder is used
to approximate a projection onto M, producing z0 = µ∼1(x0). Note that the movement from x0 to
f(z0) need not be contractive, but this is a finite-time motion, after which the system is contractive.

3.3 LEARNING POSITION AND ORIENTATION DYNAMICS

So far, we have focused on Euclidean robot states, but in practice, the end-effector motion also
involves rotations, which do not have an Euclidean structure. We first review the group structure of
rotation matrices and then extend NCDS to handle non-Euclidean data using Theorem 1.

Orientation parameterization. Three-dimensional spatial orientations can be represented in
several ways, including Euler angles, unit quaternions, and rotation matrices (Shuster, 1993). We
focus on the latter. The set of rotation matrices forms a Lie group, known as the special orthogonal
group SO(3) =

{
R ∈ R3×3

∣∣R⊤R = I,det(R) = 1
}

. Every Lie group is associated with its Lie
algebra, which represents the tangent space at its origin (Fig. 3). This Euclidean tangent space allows
us to operate with elements of the group via their projections on the Lie algebra (Solà et al., 2018).
In the context of SO(3), its Lie algebra so(3) is the set of all 3× 3 skew-symmetric matrices [r]×.
This skew-symmetric matrix exhibits three degrees of freedom, which can be reparameterized as a
3-dimensional vector r = [rx, ry, rz] ∈ R3. First  cover

Figure 3: Aspects of the Lie
group SO(3).

We can map back and forth between the Lie group SO(3) and its asso-
ciated Lie algebra so(3) using the logarithmic and exponential maps,
denoted Log : SO(3) → so(3) and Exp : so(3) → SO(3), respectively.
We provide explicit formulae for these in Appendix A.2. Due to wrapping
(e.g. 360◦ rotation corresponds to 0◦), the exponential map is surjective.
This implies that the inverse, i.e. Log, is multivalued, which complicates
matters. However, for vectors r ∈ so(3), both Exp and Log are diffeo-
morphic if ∥r∥< π (Falorsi et al., 2019; Urain et al., 2022). This π-ball
Bπ is known as the first cover of the Lie algebra and corresponds to the part where no wrapping occurs.

NCDS on Lie groups. Consider the situation where the system state is a rotation, i.e. x ∈ SO(3),
which we seek to model with a latent NCDS. From a generative point of view, we first construct
a decoder µ : Z → so(3) with outputs in the Lie algebra. We can then apply the exponential
map to generate a rotation matrix R ∈ SO(3), such that the complete decoder becomes Exp ◦µ.

1For training, the latent velocities are simply estimated by a numerical differentiation w.r.t the latent state z.
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Figure 4: Architecture overview: a single iteration of NCDS simultaneously generating position and orientation
dynamics. (A) VAE (pink box): The encoder processes the concatenated position-orientation data pt, yielding a
resulting vector that is subsequently divided into two components: the latent code z (yellow squares) and the
surplus (gray squares). The Unpad function in Equation 7 removes the unused segment. The unpadded latent
code z is fed to the contraction module and simultaneously padded with zeros (white squares) before being
passed to the injective decoder. (B) Contraction (blue box): The Jacobian network output, given the latent
codes, is reshaped into a square matrix and transformed into a negative definite matrix using Equation 2. The
numerical integral solver then computes the latent velocity ż. Later, using Eq. 8, ż is mapped to the input-space
velocity via the decoder’s Jacobian Jµξ.

Unfortunately, even if µ is injective, we cannot ensure that Exp ◦µ is also injective (since Exp is
surjective), which then breaks the stability guarantees of NCDS. Here we leverage the result that
Exp is a diffeomorphism as long as we restrict ourselves to the first cover of so(3). Specifically, if
we choose a decoder architecture such that µ : Z → Bπ is injective and have outputs on the first
cover, then Exp ◦µ is injective, and stability is ensured (see Appendix A.5). Note that during training,
observed rotation matrices can be mapped directly into the first cover of so(3) using the logarithmic
map. When the system state consists of both rotations and positions, we simply decode to higher
dimensional variables and apply exponential and logarithmic maps on the appropriate dimensions.
Figure 4 depicts this general form of NCDS.

3.4 OBSTACLE AVOIDANCE VIA MATRIX MODULATION

In real-world scenarios, obstacle avoidance is critical to achieving safe autonomous robots. Thus, the
learned dynamical system should effectively handle previously unseen obstacles, without interfering
with the overall contracting behavior of the system. Fortunately, NCDS can easily be adapted to
perform contraction-preserving obstacle avoidance using the dynamic modulation matrix G from
Huber et al. (2022). This approach locally reshapes the learned vector field in the proximity of
obstacles, while preserving contraction guarantees. To avoid obstacles effectively, it is imperative to
know both the position and geometry of the obstacle. This makes obstacle avoidance on the VAE
latent space difficult as we need to map both obstacle location and geometry to the latent space Z.

Instead, we directly apply the modulation matrix to the data space X of the decoded dynamical
system. Specifically, Huber et al. (2022) shows how to construct a modulation matrix G from the
object location and geometry, such that the vector field ẋ = G(x)Jµξ

(z)ż is both contractive and
steers around the obstacle. With this minor modification, NCDS can be adapted to avoid obstacles.
We provide the details in Appendix A.3. Note that this is tailored for obstacle avoidance at the end-
effector level. In order to extend this to multiple-limb obstacle avoidance, the modulation matrix must
be refined to incorporate the robot body, and NCDS must be trained using joint space trajectories.

4 EXPERIMENTAL RESULTS

To evaluate the efficiency of NCDS, we consider several synthetic and real tasks. Comparatively,
we show that NCDS is the only method to scale gracefully to higher dimensional problems,
due to the latent structure. We further demonstrate the ability to build dynamic systems on the
Lie group of rotations and to avoid obstacles while ensuring stability. Neither of the baseline
methods have such capabilities. Experimental details are in Appendix A.4, while ablation studies
of NCDS modeling choices are in Appendix A.6.3. Furthermore, the videos are available at:
https://sites.google.com/view/neuralcontraction/home.

Datasets. There are currently no established benchmarks for contraction-stable robot motion
learning, so we focus on two datasets. First, we test our approach on the LASA dataset (Lemme
et al., 2015), often used for benchmarking asymptotic stability. This consists of 26 different two-
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Figure 5: Visualization of the LASA-2D dataset: Gray contours represent the learned vector field, black
trajectories depict demonstrations, and orange/green trajectories illustrate path integrals starting from the initial
points of the demonstrations and plot corners. The magenta circles indicate the initial points of the path integrals.

dimensional hand-written trajectories, which the robot is tasked to follow. To evaluate our method,
we have selected 10 different trajectories from this dataset. To ensure consistency and comparability,
we preprocess all trajectories to all stop at the same target state. Additionally, we omit the initial few
points of each demonstration, to ensure that the only state exhibiting zero velocity is the target state. To
further complicate this easy task, we task the robot to follow 2, or 4 stacked trajectories, resulting in 4
(LASA-4D), or 8-dimensional (LASA-8D) data, respectively. We further consider a dataset consisting
of 5 trajectories from a 7-DoF Franka-Emika Panda robot using a Cartesian impedance controller.

Metrics. We use dynamic time warping distance (DTWD) as the established quantitative measure of
reproduction accuracy w.r.t. a demonstrated trajectory, assuming equal initial conditions (Ravichandar
et al., 2017; Sindhwani et al., 2018). This is defined as,

DTWD(τx, τx′) =
∑

j∈l(τx′ )

min
i∈l(τx)

(
d(τxi

, τx′
j
)
)
+

∑
i∈l(τx)

min
j∈l(τx′ )

(
d(τxi

, τx′
j
)
)
,

where τx and τx′ are two trajectories (e.g. a path integral and a demonstration trajectory), d is a
distance function (e.g. Euclidean distance), and l(τ) is the length of trajectory τ .

Baseline methods. Our work is the first contractive neural network architecture, so we cannot
compare NCDS directly to methods with identical goals. Instead, we compare to existing methods
that provide asymptotic stability guarantees. In particular, Euclideanizing flow (Rana et al., 2020),
Imitation flow (Urain et al., 2020) and SEDS (Khansari-Zadeh & Billard, 2011).

4.1 COMPARATIVE RESULTS

We first evaluate NCDS on two-dimensional trajectories for ease of visualization. Here data is
sufficiently low-dimensional that we do not consider a latent structure. Figure 5 shows the learned
vector fields (gray contours) for 10 diverse trajectory shapes chosen according to their difficulty from
the LASA dataset, covering a wide range of demonstration patterns (black curves) and dynamics. We
observe that NCDS effectively captures and replicates the underlying dynamics. We compute addi-
tional path integrals starting from outside the data support (green curves) to assess the generalization
capability of NCDS beyond the observed demonstrations. Remarkably, NCDS successfully generates
plausible trajectories even in regions not covered by the original demonstration data. Moreover, the
yellow path integrals, starting from the initial points of the demonstrations, show that our approach
can also reproduce the demonstrated trajectories accurately. This is evidence that the contractive
construction is a viable approach to controlling the extrapolation properties of the neural network.

Table 1 shows average DTWD distances among five generated path integrals and five demonstration
trajectories for both NCDS and baseline methods. For the two-dimensional problem, both Eu-
clideanizing flow and Imitation flow outperform NCDS and SEDS, though all methods perform quite
well. To investigate stability, Fig. 6 displays the average distance over time among five path integrals
starting from random nearby initial points for different methods. We observe that only for NCDS
does this distance decrease monotonically, which indicates that it is the only contractive method.
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Figure 7: Path integrals generated using different methods on LASA-8D. Black curves are training data, while
yellow are the learned path integrals. To construct the 8D dataset, we have concatenated 4 different 2D datasets.
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Figure 6: Average distance between random
nearby trajectories over time for LASA-2D.
Only NCDS monotonically decreases, i.e. it
is the only contractive method.

To test how these approaches scale to higher-dimensional
settings, we consider the LASA-4D and LASA-8D
datasets, where we train NCDS with a two-dimensional
latent representation. From Table 1, it is evident that
the baseline methods quickly deteriorate as the data
dimension increases, and only NCDS gracefully scales
to higher dimensional data. This is also evident from
Fig. 7 which shows the training data and reconstructions
of different LASA-8D dimensions with different methods.
These results clearly show the value of having a low-dimensional latent structure (more details in
Appendix A.6.5).

To further compare our method, we consider a robotic setting where we evaluate all the methods on a
real dataset of joint-space trajectories collected on a 7-DoF robot. The last column of Table 1 shows
that only NCDS scales gracefully to high-dimensional joint-space data, and outperforms the baseline
methods. The supplementary material includes a video showcasing the simulation environment in
which each robot executes a drawing task, depicting V-shape trajectories on the table surface.

4.2 OBSTACLE AVOIDANCE

Unlike baselines methods, our NCDS framework also provides dynamic collision-free motions. To
assess the obstacle avoidance capabilities of our approach, we conducted a couple of experiments
on the LASA dataset. The results of this experiment are reported in the third panel of Figure 8. As
observed, the presence of an obstacle that completely blocks the demonstrations is represented by a
red circle. Remarkably, NCDS successfully reproduced safe trajectories by effectively avoiding the
obstacle and ultimately reaching the target. Moreover, the last panel in Figure 8 shows the obstacle
avoidance in action as the robot’s end-effector navigates around the orange cylinder. These results
experimentally show how the dynamic modulation matrix approach leads to obstacle-free trajectories
while still guaranteeing contraction.

4.3 ROBOT EXPERIMENT

To demonstrate the potential application of NCDS to robotics, we conducted several experiments
on a 7-DoF Franka-Emika robotic manipulator, where an operator kinesthetically teaches the robot
drawing tasks. The learned dynamics are executed using a Cartesian impedance controller. The details
of the implementation and the specific network architecture are provided in Appendix A.4 and A.6.4.

LASA-2D LASA-4D LASA-8D 7 DoF robot

Euclideanizing flow 0.72 ± 0.12 3.23± 0.34 10.22± 0.40 5.11± 0.30
Imitation flow 0.80± 0.24 0.79 ± 0.22 4.69± 0.52 2.63± 0.37

SEDS 1.60± 0.44 3.08± 0.20 4.85± 1.64 2.69± 0.18
NCDS 1.37± 0.40 0.98± 0.15 2.28 ± 0.24 1.18 ± 0.16

Table 1: Average dynamic time warping distances (DTWD) between different approaches. NCDS exhibits
comparable performance in low dimensions, while clearly being superior in high dimensions.
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Figure 8: Robot and obstacle avoidance. Left two panels show robot experiments with orange and red paths
illustrating unperturbed and perturbed motion. The first panel shows a learned vector field in R3 with a constant
orientation. In the second panel, the vector field expands to R3 × SO(3), aligning the end-effector’s orientation
with the motion direction. Superimposed robot images depict frames of executed motion. The right two panels
display how an obstacle locally reshapes the learned vector field using the modulation matrix. In the third panel,
gray contours represent the learned vector field, black trajectories depict the demonstrations, and orange/green
trajectories are path integrals starting from both initial points of the demonstrations and plot corners. Magenta
and red circles indicate the initial points of the path integrals and the obstacle, correspondingly. The last panel
shows how the robot successfully avoids the obstacle (orange cylinder).

Firstly, we demonstrated 7 sinusoidal trajectories while keeping the end-effector orientation constant,
which means that the robot end-effector dynamics only evolved in R3. As Fig. 8-a shows, the robot
was able to successfully reproduce the demonstrated dynamics by following the learned vector field
encoded by NCDS. Importantly, we also tested the extrapolation capabilities of our approach by
introducing physical perturbations to the robot end-effector, under which the robot satisfactorily
adapted and completed the task (see the video attached to the supplementary material).

The next experiment was aimed at testing our extension to handle orientation dynamics by learning
dynamics evolving in R3 × SO(3), i.e. full-pose end-effector movements. We collected several
V-shape trajectories on a table surface in which the robot end-effector always faces the direction of
the movement, as shown in Fig. 8-b. To evaluate the performance of this setup on a more complex
dataset, we generated a synthetic LASA dataset in R3 × SO(3). The results show that NCDS
adeptly learns a contractive dynamical system from this dataset (see Appendix A.6.1). Another set of
experiment was aimed at validating our approach on joint-space dynamic motions in a simulation
environment (Corke & Haviland, 2021). These results show that among the baseline methods, NCDS
outperforms others in generating motion within the joint space. (see Appendix A.6.6). Furthermore,
we have further extended the joint space experiments to learning human motion skills. The findings
indicate that NCDS successfully learns a contractive dynamical system from complex demonstrations
in high-dimensional spaces. (see Appendix A.6.2).

5 DISCUSSION

In this paper, we proposed the first mechanism for designing neural networks that are contractive.
This allows us to build a flexible class of models, called neural contractive dynamical systems
(NCDS), that can learn dynamical systems from demonstrations while retaining contractive stability
guarantees. Since contraction is built into the neural network architecture, the resulting model can
be fitted directly to demonstration data using standard unconstrained optimization. To cope with
the complexities of high-dimensional dynamical systems, we further developed a variant of VAEs
that ensures latent contrastive dynamical systems decode to contractive systems. Empirically, we
found that the latent representation tends to behave simpler than the original demonstrations, which
further increases the robustness of latent NCDS. We have further extended NCDS to the Lie group
consisting of rotation matrices in order to model real-world robotic motions. Finally, we showed that
our approach can be adapted to avoid obstacles while remaining contractive using the modulation
techniques from Huber et al. (2022).
Limitations. Empirically, we find that NCDS is sensitive to the choice of numerical integration
scheme when solving Eq. 4. Specifically, it is important to use integration schemes with adaptive
step sizing for the method to be reliable. In all experiments, we used the standard DOPRI method.
One concern with adaptive step sizing is that computation time is not fixed, which may negatively
influence real-time implementations. On a related note, the need for numerical integration does
increase the running time associated with our neural architecture compared to standard feedforward
networks (see Appendix A.6.3). We, however, consider that a small price for stability guarantees.
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A APPENDIX

A.1 NEGATIVE DEFINITENESS OF A SYMMETRIC MATRIX

Let A be a real n×n symmetric matrix, and let AS = 1
2 (A+A⊤) denote its symmetric part. Suppose

that AS is negative definite, which means that for all nonzero vectors v ∈ Rn, we have v⊤ASv < 0.
Now let w be an eigenvector of A with corresponding eigenvalue λ, so that Aw = λw. Then we
have w⊤Aw = w⊤λw = λw⊤w = λ|w|2. Taking the transpose of the equation Aw = λw, we
have w⊤A⊤ = λw⊤. Multiplying on the left by w and using the fact that A is symmetric, we obtain
w⊤Aw = λw⊤w. Therefore, we have w⊤Aw = w⊤ASw +w⊤ (A−AS)w ≤ w⊤ASw < 0.
Since w⊤Aw < 0 for any nonzero eigenvector w of A, we conclude that A is negative definite.
Thus, the negative definiteness of the symmetric part AS implies the negative definiteness of A.

A.2 LIE OPERATORS OF SO(3)

To map back and forth between the Lie group SO(3) and its associated Lie algebra so(3), we employ
the logarithmic Log : SO(3) → so(3), and exponential Exp : so(3) → SO(3) maps, which are
defined as follows,

Exp([r]×) = I+
sin(ζ)

ζ
[r]× +

1− cos(ζ)

ζ2
[r]2×, (9)

Log(R) = ζ
R−R⊤

2 sin(ζ)
, (10)

where ζ = arccos
(

Tr(R)−1
2

)
. Moreover, R represents the rotation matrix, and [r]× denotes the

skew-symmetric matrix associated with the coefficient vector r.

A.3 OBSTACLE AVOIDANCE VIA MATRIX MODULATION

We here detail the used matrix modulation technique, due to Huber et al. (2022), which we use
for obstacle avoidance. This approach locally reshapes the learned vector field in the proximity of
obstacles, while preserving contraction guarantees. To avoid obstacles effectively, it is imperative
to know both the position and geometry of the obstacle. This makes obstacle avoidance on the
VAE latent space particularly difficult as we need to map the obstacle location and geometry to the
latent space Z. Hence, we directly apply the modulation matrix to the data space X of the decoded
dynamical system.

Formally, given the modulation matrix G, we can reshape the data space vector field to dynamically
avoid an obstacle as follows,

ẋ = G(x)Jµξ
(z)ż, with G(x) = E(x)D(x)E(x)−1, (11)

where E(x) and D(x) are the basis and diagonal eigenvalue matrices computed as,

E(x) = [r(x) e1(x) . . . ed−1(x)], and D(x) = diag(λr(x)λe(x), . . . , λe(x)), (12)

where r(x) = x−xr

∥x−xr∥ is a reference direction computed w.r.t. a reference point xr on the obstacle,
and the tangent vectors ei form an orthonormal basis to the gradient of the distance function Γ(x)
(see (Huber et al., 2022) for its full derivation). Moreover, the components of the matrix D are

defined as λr(x) = 1−
(

1
Γ(x)

) 1
ρ

, λe(x) = 1 +
(

1
Γ(x)

) 1
ρ

, where ρ ∈ R+ is a reactivity factor. Note
that the matrix D modulates the dynamics along the directions of the basis defined by the set of
vectors r(x) and e(x). As stated in (Huber et al., 2022), the function Γ(·) monotonically increases
w.r.t the distance from the obstacle’s reference point xr, and it is, at least, a C1 function. Importantly,
the modulated dynamical system ẋ = G(x)Jµξ

(z)ż still guarantees contractive stability, which can
be proved by following the same proof provided in (Huber et al., 2019, App. B.5).

A.4 IMPLEMENTATION DETAILS

Both the Variational Autoencoder (VAE) and the Jacobian network Jθ were implemented using the
PyTorch framework (Paszke et al., 2019). For the VAE, we employed an injective generator based
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Algorithm 1: Neural Contractive Dynamical Systems (NCDS): Training in task space
Data: Demonstrations: τn = {(xt,Rt)}n , n ∈ [1, N ], t ∈ [1, Tn]
Result: Learned contractive dynamical system
rn,t = Log(Rn,t); // Obtaining skew-symmetric coefficients via the Lie algebra
pn,t = [xn,t, rn,t]; // Create new state vector
argminξLELBO(ξ

∗;pn,t); // Train the VAE
zn,t = µ∼1

ξ (pn,t); // Encode all poses using the trained VAE
żn,t =

zn,t+1−zn,t

∆t ; // Estimate latent velocities via finite differences
argminθLJac(θ

∗;pn,t); // Train the Jacobian network

Algorithm 2: Neural Contractive Dynamical Systems (NCDS): Robot Control Scheme
Data: Current state of the robot end-effector at time t: [xt,Rt]
Result: Velocity of the end-effector at current time step ẋt
rt = Log(Rt); // Obtaining skew-symmetric coefficients
pt = [xt, rt]; // Create new state vector
zt = µ∼1

ξ (pt); // Compute the latent state
ˆ̇zt = f(zt); // Compute the latent velocity
Jµξ

(zt) =
∂µξ

∂zt
; // Compute the Jacobian of the decoder

ẋt = Jµξ
(zt)ˆ̇zt; // Compute input space velocity

on M-flows (Brehmer & Cranmer, 2020), specifically using rational-quadratic neural spline flows.
These flows were structured with three coupling layers. Within each coupling transform, half of the
input values underwent elementwise transformation using a monotonic rational-quadratic spline. The
parameters of these splines were determined through a residual network comprising two residual
blocks, with each block consisting of a single hidden layer containing 30 nodes. Throughout the
network, we employed Tanh activations and did not incorporate batch normalization or dropout
techniques. The rational-quadratic splines were constructed with ten bins, evenly distributed over
the range of (−10, 10). The Jacobian network was implemented using a neural network architecture
consisting of two hidden layers, with each layer containing 500 nodes. The output of this network
was reshaped to form a square matrix. To facilitate the integration process, we used an off-the-shelf
numerical integrator called ’odeint’ from the torchdiffeq Python package (Chen, 2018).
This package provides efficient implementations of various numerical integration methods. In our
experiments, we specifically utilized the Runge-Kutta and dopri5 integration methods, which are
well-known and widely used for solving ordinary differential equations.

Loss functions: The VAE is trained using the standard evidence lower bound (ELBO):

LELBO = Eqξ(z|x) [log(pϕ(x|z))]−KL (qξ(z|x)||p(z)) , (13)

where KL denotes the Kullback-Leibler divergence. Thereafter, the Jacobian network is trained
according to the loss function LJac, which measures the error between the observed and approximated
next state,

LJac = ∥zt+1 − (zt + ˆ̇zt)∥2, (14)

where zt, zt+1, and ˆ̇zt represent the current and next observed latent states, along with the calculated
latent velocity.

Algorithms: In this section, we elaborate on the training and robot control schemes for NCDS.
The steps for training the Variational Autoencoder (VAE) and Jacobian network are outlined in Algo-
rithm 1. Furthermore, the steps for employing NCDS to control a robot are detailed in Algorithm 2.
As the algorithms show, the traning of the latent NCDS is not fully end-to-end. In the latter case, we
first train the VAE (end-to-end), and then train the latent NCDS using the encoded data.
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Figure 11: Time series of demonstrations and path integrals in R3 × SO(3)

A.5 AN INJECTIVE DECODER ARCHITECTURE OVER THE π-BALL Bπ

Figure 9: An illustration of the function b(x)
in two dimensions.

To ensure that a decoder neural network has outputs over
the π-ball (Sec. 3.3), we introduce a simple layer. Let
f : Rd → RD be an injective neural network, where
injectivity is only considered over the image of f . If we
add a TanH-layer, then the output of the resulting network
is the [−1, 1]D box, i.e. tanh(f(z)) : Rd → [−1, 1]D.
We can further introduce the function,

b(x) =

{
∥x∥∞
∥x∥2

x x ̸= 0

x x = 0
. (15)

This function smoothly (and invertible) deforms the
[−1, 1]D box into the unit ball (Fig. 9). Then, the function,

f̂(z) = πb(tanh(f(z))), (16)

is injective and has the signature f̂ : Rd → Bπ(D).

A.6 ADDITIONAL EXPERIMENTS

A.6.1 LEARNING R3 × SO(3)

Figure 10: The background de-
picts the contours of the latent
vector field, green and yellow
curves depict the path integrals,
and black dots represent demon-
stration in latent space.

The orientation trajectories of the robot experiments tend to show
relatively simple dynamics. Consequently, the learning of these tra-
jectories may not fully showcase the true potential of the approach.
As a result, we conducted additional experiments to demonstrate
the capacity of NCDS to encode full-pose (i.e., position-orientation)
dynamic motions, which present a more challenging and compre-
hensive evaluation scenario. To construct a challenging dataset on
SO(3), we projected the LASA datasets onto a 3-sphere, thereby gen-
erating synthetic quaternion data. Then we transformed this dataset
to rotation matrices on SO(3). Later, we applied the Log map to
project these points onto the Lie algebra. To construct the position
data in R3, we simply project the 2D LASA dataset to R3 by con-
catenating a zero to the vector. Consequently, we concatenate this
vector with the vector on the Lie algebra representing the orientation.
This will produce a 6 dimensional state vector in R6. To increase the
level of complexity, we employed two distinct LASA datasets for
the position and orientation dimensions. Figure 10, depicts the latent
dynamical system, the black dots represent the demonstration points,
yellow path integrals start at the initial point of the demonstration, and green path integrals start in
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Figure 12: Left: Latent path integrals with NCDS trained in joint space R44. Right: Latent path integrals with
NCDS trained on full human motion space (R44 × R3 × SO(3)). The background depicts the contours of the
latent vector field, green and yellow curves depict the path integrals, and black dots represent demonstration in
latent space.

random points around the demonstrations. Figure 11 shows a time series of input space trajectory in
R3 and SO(3). Moreover, the black curves show the demonstration data and other trajectories show
the path integrals in each dimension. The results show that NCDS is able to learn complex non-linear
contractive dynamical systems in R3 × SO(3).

A.6.2 LEARNING HUMAN MOTIONS

To assess the model’s performance in a more complex environment, we conducted a recent experiment
using the KIT Whole-Body Human Motion Database (Mandery et al., 2016). This dataset captures
subject-specific motions, which are standardized based on the subject’s height and weight using a
reference kinematics and dynamics model known as the master motor map (MMM).

Motion in Joint space R44: Focusing on the Tennis forehand motion, we selected this specific
skill from the dataset, where each point in the motion trajectories is defined in a 44-dimensional joint
space. Figure 12–left displays the latent contractive vector field generated by NCDS. The background
depicts the contours of the latent vector field, and green and yellow curves represent latent path
integrals when the initial point is respectively distant from and coincident with the initial point of the
demonstration. Figure 13 illustrates how the human dummy replicates each of the generated motions.
The upper row of this plot depicts the progressive evolution of the demonstrated motion from left to
right. Meanwhile, the middle and bottom rows illustrate the motions generated by NCDS when the
initial point is respectively distant from and coincident with the initial point of the demonstration.

Motion in on full human motion space R44×R3×SO(3): The previous experiment has primarily
concentrated on reconstructing motions within the joint space alone, which may be insufficient for
some particular human motions. The data recorded from the human also includes the base (hip) link
pose of the human dummy, which is essential for a complete representation of the motion. To address
this, we introduced the Kick motion skill into our experiments, where each point of the motion
trajectory is defined in a 44-dimensional joint space, along with the position and orientation data for
the base link (hip link). This approach extends the representation of the motion to a comprehensive
50-dimensional input space.

Figure 12–right shows the latent path integrals generated by NCDS. Figure 14 shows the human
dummy mimicking each generated motion. The upper row of this plot depicts the progressive
evolution of the demonstration motion from left to right. Meanwhile, the middle and bottom rows
illustrate the motions generated by NCDS when the initial point is respectively distant from and
coincident with the initial point of the demonstration. This result demonstrates the inherent ability of
Latent NCDS to compress a 50-dimensional nonlinear motion into a 2-dimensional space.

A.6.3 QUANTITATIVE RESULTS

Regularization: It is imperative to clarify that the regularization term in Equation 2, known as
epsilon ϵ, plays a crucial role in defining the upper bound for the eigenvalues of the Jacobian Ĵf (x),
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Figure 13: Generated Human Motion with NCDS trained in joint space R44: The upper row depicts the
progressive evolution of the demonstration motion from left to right. Meanwhile, the middle and bottom rows
illustrate the motions generated by NCDS when the initial point is respectively distant from and coincident with
the initial point of the demonstration.

which inherently governs the contraction rate of the system. Figure 15 illustrates the effect of ϵ on
the accuracy of the system. Adjusting this value, particularly through increments, has the potential to
negatively affect the network’s expressiveness, therefore compromising the reconstruction process.
The observed negative effect can be attributed to the fact that this regularization is applied to the
entire Jacobian matrix and not exclusively to the elements responsible for preserving the negative
definiteness of the Jacobian. As a result, it might inadvertently penalize essential components of the
Jacobian, leading to adverse consequences on the model’s expressivity. A more targeted approach
that focuses solely on the relevant elements could potentially mitigate these undesired effects and
enhance the regularization’s overall effectiveness.

Unconstrained dynamical system: To illustrate the influence of having a negative definite Jacobian
in NCDS, we contrast with a system identical to NCDS except that we remove the definiteness
constraint on the Jacobian network. Figure 16 shows the path integrals generated by both contractive
(Figure 16-a) and unconstrained (Figure 16-b) dynamical systems. As anticipated, the dynamics
generated by the unconstrained system lack stable behavior. However, the vector field aligns with the
data trends in the data support regions. Furthermore, we performed similar experiments with two
different baseline approaches: an MLP and a Neural Ordinary Differential Equation (NeuralODE)
network, to highlight the effect of the contraction constraint on the behavior of the dynamical system.
The MLP baseline uses a neural network with 2 hidden layers each with 100 neurons with tanh
activation function. The NeuralODE baseline is implemented based on (Poli et al.), with 2 hidden
layers each with 100 neurons. The model is then integrated into a NeuralODE framework. The
NeuralODE is configured with the ’adjoint’ sensitivity method and utilizes the ’dopri5’ solver for
both the forward and adjoint passes. It is important to mention that these baselines directly reproduce
the velocity according to ẋ = f(x). These models were trained with the same cost function as our
NCDS’s Jacobian network loss defined in Equation 14. Both networks are trained for 1000 epochs
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Figure 14: Generated Human Motion with NCDS trained on full human motion space (R44 × R3 × SO(3): The
upper row depicts the progressive evolution of the demonstration motion from left to right. Meanwhile, the
middle and bottom rows illustrate the motions generated by NCDS when the initial point is respectively distant
from and coincident with the initial point of the demonstration.

(a) ϵ = 10−4 (b) ϵ = 10−2 (c) ϵ = 10−1 (d) ϵ = 10

Figure 15: Path integrals generated by NCDS trained using different regularization term ϵ.

with ADAM optimizer. Figure 16-c and 16-d shows that both models effectively model the observed
dynamics (vector field); however, as anticipated, contraction stability is not achieved.

Integration: Furthermore, we tested the integrator in a toy example constructed using a Sine wave
under different conditions. Figure 17 shows the integrator under different conditions. Figure 17-a
and -b displays cases when the absolute and relative tolerance parameters of the integrator need to be
at least as 10−3. Figure 17-c shows that the number of time steps to solve the integration does not
make any difference. Furthermore, Figure 17-d displays different integration methods and their data
reconstruction accuracy.
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(a) Contractive (b) Unconstrained (c) MLP (d) Neural ODE

Figure 16: Path integrals generated under the Neural Contractive Dynamical Systems (NCDS) setting, along
with baseline comparisons using Multilayer Perceptron (MLP) and Neural Ordinary Differential Equation
(NeuralODE) models.
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(a) Comparison among different absolute tolerance values
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(b) Comparison among different relative tolerance values
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(c) Comparison among different integration time steps
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(d) Comparison among different integration methods

Figure 17: Evaluation of the integrator

Activation function: The choice of activation function certainly affects the generalization in the
dynamical system (where there is no data). To show this phenomena, we ablated few common
activation functions. For this experimental setup, we employed a feedforward neural network
comprising two hidden layers, each consisting of 100 units. As shown in Figure 18, both the Tanh and
Softplus activation functions display superior performance, coupled with satisfactory generalization
capabilities. This indicates that the contour of the vector field aligns with the overall demonstration
behavior outside of the data support. Conversely, opting for the Sigmoid activation function might
yield commendable generalization beyond the confines of the data support. However, it is essential to
acknowledge that this choice could potentially encounter challenges when it comes to reaching and
stopping at the target.

Dimensionality and execution time: Table 2 compares 5 different experimental setups. First,
Table 2-a reports the average execution time under the setup where the dimensionality reduction
(i.e., no VAE) is discarded and the dynamical system is learned directly in the input space. As the
results show, increasing the dimensionality of the input space from 2 to 8 entails a remarkable 40-fold
increase in execution time for a single integration step. This empirical relationship reaffirms the
inherent computational intensity tied to Jacobian-based computations. To address this issue, our
approach leverages the dimensionality reduction provided by a custom Variational Autoencoder
(VAE) that takes advantage of an injective generator (as decoder) and its inverse (as encoder). As
showcased in Table 2-b, the VAE distinctly mitigates the computational burden. Comparing Table 2-a
and Table 2-b, the considerable advantages of integrating the contractive dynamical system with the
VAE into the full pipeline become evident as it leads to a significant halving of the execution time
in the 8D scenario. Additionally, the findings indicate that increasing the dimensionality from 8 to
44 results in a sixfold increment in execution time. Moreover, the presented results indicate that our
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(a) Tanh (b) Softplus (c) Sigmoid

Figure 18: Path integrals generated by NCDS trained using different activation functions.

Input. Dim 2D 8D

time (ms) 1.23 40.9

Learning the vector field directly in the input space.

Input. Dim 3D 8D 44D

time (ms) 10.6 20.2 121.0

Learning the vector field in the latent space (full
pipeline).

Table 2: Average execution time (in milliseconds) of a single integration step

current system may not achieve real-time operation. However, it is noteworthy that the video footage
from our real-world robot experiments convincingly demonstrates the system’s rapid query response
time, sufficiently efficient to control the robot arm, devoid of any operational concerns.

A.6.4 COMPARISONS

Table 3 summarizes the comparisons presented in the main papers in the contraction literature. Here
we note a lack of consensus regarding the method or baseline for comparison in the context of learning
contractive dynamical systems. A significant number of approaches have overlooked the contraction
properties of their baseline, opting instead to base their comparisons solely on asymptotic stability
guarantees. Following this trend, we have conducted a thorough and extensive comparative analysis
involving Stable Estimator of Dynamical Systems (SEDS), Euclideanizing Flows (EF), and Imitation
Flows (IF). We emphasize that neither of these baselines provides contraction guarantees but rather
asymptotic stability guarantees. Therefore, the comparison is provided solely to evaluate the general
stability and accuracy of the reconstructed motion.

To perform comparison between these methods and ours, we have provided two groups of datasets.
The first group comprises multiple synthetic datasets, derived from the LASA dataset. The second
category combines joint space trajectories of a 7-DOF Franka-Emika Panda robot arm.

Experimental setups:

• Imitation Flow: For Imitation Flow we have used a imitation flow network with the
depth of 5. Each level within this depth was constructed utilizing CouplingLayer, Ran-
domPermutation, and LULinear techniques, as recommended by the authors for managing
high-dimensional data. The training process includes 1000 epochs, with a empirically
chosen learning rate of 10−3. These hyper parameters were found experimentally and the
best results have been selected to be compared against.

• Euclidenizing Flow: Here, we have used coupling network with random Fourier features
parameterization, with 10 coupling layers each with 200 hidden units, and length scale of
0.45 as the length scale for random Fourier features. The training process includes 1000
epochs, with a empirically chosen learning rate of 10−4. These hyper parameters were
found experimentally and the best results have been selected to be compared against.

• SEDS: Here, we use 5 Gaussian functions. The training process includes 1000 epochs with
MSE objective.
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A.6.5 SYNTHETIC LASA

First, we evaluate the performance and accuracy of the methods on a 2D LASA dataset as the baseline
for the experiments. As depicted in Fig. 19, all methods demonstrate strong performance, effectively
capturing the data trends and successfully reaching the target points.

(a) NCDS (b) SEDS (c) EF (d) IF

Figure 19: Path integrals generated using different approaches for the two-dimensional LASA problem. All
methods provide similar reconstructions.

Examining the average time warping distance in Fig. 20, it becomes evident that EF and IF have
better performance in reproducing the system dynamics.
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Figure 20: Average dynamic time warping distance between path integrals and the demonstrations for the
two-dimensional LASA problem.

We extend our evaluation to a 4D LASA synthetic dataset created by merging two distinct datasets.
In Figure 21, we observe that while NCDS and IF maintain a strong level of performance, SEDS and
EF exhibit comparatively inferior results.
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Figure 21: Average dynamic time warping distance between path integrals and the demonstrations for the
four-dimensional LASA problem.

Lastly, we assess the methods using an 8D LASA synthetic dataset, constructed by concatenating 4
different datasets,

D = [xAngle, yAngle, xLine, yLine, xSine, ySine, xJShape, yJShape] ∈ RT×8. (17)

As illustrated in Fig. 22, NCDS has the best performance in higher-dimensional spaces.
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Figure 22: Average dynamic time warping distance between 5 trajectories constructed with different methods
and demonstration trajectories

It is worth noting that in the 2D scenario, NCDS was directly trained in the input space, whereas in
the 4D and 8D experiments, the dynamics were learned in the latent space

To make sure that we have a fair comparison we have scaled up all the methods. 1. Imitation flow: the
depth of the network was scaled up by factor of 2 (from 5 to 10), We evaluated 20 different architecture
with higher and lower depth and used the one with the best performance. 2. Euclideanizing Flow:
the number of coupling blocks in the BijectionNet in the original code released by the Authors was
increased by the factor of 2 from (10 to 20). We evaluated 20 different architecture with higher
number of blocks and nodes and used the one with the best performance. 3. SEDS: we increased the
number of Gaussian functions from 5 to 20. We evaluated 10 different architecture with different
number of Gaussian functions used the one with the best performance. 4. NCDS: The Jacobian
network did not need more parameters since the latent space has stayed 2D. Therefore, we just added
the VAE to the architecture when moving from 2D to 8D.

A.6.6 JOINT SPACE DYNAMICS

Since using the pose information including Quaternion is not feasible due to the fact that none of
the methods that we compared against support non-Euclidean spaces, we have chosen to use joint
space trajectories of a 7-DOF robot. Therefore, demonstration data that is used is 7-dimensional and
it represents “V” shape character on a table. Fig. 23 shows the comparison on the average dynamic
time warping distance (DTWD) among different methods when learning 7D joint space trajectories.
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Figure 23: Average dynamic time warping distance between path integrals and the demonstrations for the
7-dimensional Joint space problem.

As shown, NCDS provides the highest reconstruction accuracy, therefore showing how our method
better scales to higher-dimensional settings. The video of this experiment is int the supplementary
material. Moreover, the video shows the recording process of the demonstrations and also 4 dif-
ferent videos from simulated robots performing the path integrals in the joint space using the four
benchmarked methods.
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Paper title Abbr. Compared against Year
Safe Control with Learned Certificates: A
Survey of Neural Lyapunov, Barrier, and
Contraction methods

2022

Learning Contraction Policies from Offline
Data

MPC (ILQR), RL (CQL) 2022

Neural Contraction Metrics for Robust Es-
timation and Control: A Convex Optimiza-
tion Approach

NCM CV-STEM, LQR 2021

Learning Stabilizable Nonlinear Dynamics
with Contraction-Based Regularization

CCM-R 2021

Learning Certified Control Using Contrac-
tion Metric

C3M SoS (Sum-of-Squares programming), MPC,
RL (PPO)

2020

Learning position and orientation dynamics
from demonstrations via contraction analy-
sis

CDSP SEDS, CLF-DM (Control Lyapunov
Function-based Dynamic Movements),
Tau-SEDS, NIVF (neurally imprinted
vector fields)

2019

Learning Stable Dynamical Systems using
Contraction Theory

C-GMR SEDS 2017

Learning Contracting Vector Fields For Sta-
ble Imitation Learning

CVF DMP, SEDS and CLF-DM 2017

Learning Partially Contracting Dynamical
Systems from Demonstrations

CDSP (only
position)

DMP, CLF-DM 2017

Table 3: The present state-of-the-art literature pertaining to the learning of contractive dynamical systems.
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