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Abstract

Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial
resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly
alleviates this problem and effectively turns EEG into a brain imaging device. The quality of the source reconstruction
depends on the forward model which details head geometry and conductivities of different head compartments. These
person-specific factors are complex to determine, requiring detailed knowledge of the subject’s anatomy and physiol-
ogy. In this proof-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward
model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional
parametrization of head geometry and compartment conductivities, built using a corpus of forward models. Combined
with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model
by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specifi-
cation. Our work demonstrates that personalized EEG brain imaging is possible, even when the head geometry and

conductivities are unknown.

Keywords: Forward model, Inverse problem, Free energy, Principal component analysis, EEG

1. Introduction

Functional brain imaging is an important tool for un-
derstanding the computational architectures underlying
behavior and for guiding possible therapies for neuro-
logical diseases [1]. While EEG is growing increasingly
popular for these tasks due to its experimental flexibility
and excellent temporal resolution [2, 3, 4, 5], a direct in-
terpretation of the EEG signal based on the native scalp
electrode measurements is hampered by the confound-
ing effects of volume conduction [6, 7]. However, the
macroscopic EEG signal is generally believed to origi-
nate from well-localized gray matter sources [8, 9], and
therefore makes full 3D spatial reconstruction of the
dipole source distribution a valuable imaging modality.
The source reconstruction process has been shown to
reduce non-brain artifact signal components [10]; it al-
lows incorporation of spatial a priori information from
functional activation databases [11]; and it generally
leads to improved interpretability [12, 13] by reducing
the blurring effects of volume conduction.
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The EEG scalp electrodes measure the aggregate ac-
tivity of a large number of synchronously active neurons
[8, 9]. At the relevant frequencies for EEG, the signal
propagation from cortical sources to scalp can be con-
sidered linear and instantaneous, hence implying a lin-
ear relationship between neural activity, represented by
the set of discrete dipolar sources, and the scalp mea-
surements [6]. This linear relation can be represented
by a so-called ‘forward model’. Source inference is fun-
damentally ill-posed, as we generally have many fewer
electrodes than potential locations of activated dipoles
[14]. Inference is therefore highly dependent on a priori
information to succeed. With a few notable exceptions
to be discussed below, current research almost exclu-
sively focuses on managing a priori information with re-
spect to the source distributions, while considering the
forward model ‘known’ [15]. Here, we challenge the
assumption of the forward model being known and in-
stead suggest learning the forward model from the ac-
tual EEG data, using a new data-driven representation
of the set of feasible forward models.

The forward model summarizes the geometry and
conductances of the various tissue compartments
(skull, scalp, etc.) and is therefore inherently person-
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dependent. Estimation of the forward model currently
depends on access to anatomical information, e.g. in
the form of computerized tomography (CT) or mag-
netic resonance imaging (MRI) scans of the person’s
head [15, 16, 17]. Such scans are segmented to produce
an anatomical model consisting of nested compartments
[18, 19] and a forward model is then established, essen-
tially by solving Poisson’s equation in the so-defined
geometry [6]. Obtaining a high-quality model of the
head geometry further demands inspection of the seg-
mented head compartments and human intervention to
correct for possible mistakes [20] and thus introduces
variability and complicates the procedure. Knowing the
exact head geometry must be combined with the cor-
rect conductivity values of the head compartments to
yield accurate EEG source localization. Most often,
these values are taken to be population averages or stem
from the experimental findings of e.g. Rush et al. [21]
and Cohen et al. [22]. However, it is known that the
skull:brain conductivity ratio in particular varies greatly
between people, and additionally that a correct specifi-
cation of this ratio is important for accurate EEG imag-
ing [23, 24]. Akalin Acar et al. [25] suggest to optimize
the skull:brain conductivity ratio based on the compact-
ness and focality of the reconstructed sources. The tech-
nique, however, is reliant on the subject’s MRI data.

The lack of a well-specified forward model has led
to an interest in the factors that contribute to its un-
certainty, and the skull shape in particular has been
found to be an important factor [24]. Statistically, the
uncertainty can be represented by treating the forward
model as a stochastic variable to be estimated as part of
the source reconstruction problem. Bayesian evidence
can be used to choose the most likely forward model
among a small set of pre-defined candidates, for exam-
ple [26, 27]. This does not, however, allow interpola-
tion of forward models, i.e. a new subject is handled by
a forward model from a subject in the candidate-set.

In the more general setup [28], the forward model
uncertainty was represented by a multivariate Gaussian
distribution, for which the mean is the conventional
anatomically based estimate of the forward model.
Bayesian inference then allowed for source reconstruc-
tion, where the forward model can be mildly adapted to
the EEG recordings. In practice, the forward models at-
tained were similar to the anatomically based mean, and
limited flexibility was gained. Thus, there is a need for
a flexible prior over forward models that allows genera-
tion of forward models tailored to new subjects.

When structural scans are unavailable, template or
average models can be used. Studies have demonstrated
the usefulness of spherical harmonics to describe the

head anatomy and to generate approximate head mod-
els [29, 30, 31, 32]. In the noise-free case, approx-
imate boundary element method (BEM) head models
based on population averages showed relatively low lo-
calization errors [29]. The averages were suggested to
be either surface-based, where the head geometry was
decomposed using spherical harmonics in order to pro-
vide inter-subject correspondence, or based on averag-
ing lead field matrices. The approximate head mod-
els were further investigated by Valdés-Herndndez et
al. who performed Bayesian model averaging (BMA)
based on the recorded EEG to estimate a weighted aver-
age over database head models [30]. Lépez et al. used
spherical harmonics and BMA to infer the cortical sur-
face based on optimization of the model evidence only
given the M/EEG [31].

We propose to extend and combine the previous lit-
erature using a data-driven approach in which a for-
ward model corpus is used as a prior for new subjects.
Combined with the EEG of a new subject, the prior is
optimized to provide an individualized forward model.
In this proof-of-concept-study, we show for synthetic
data that the inferred forward models for unseen sub-
jects provide more accurate source distributions than a
template forward model. We invoke the so-called Varia-
tional Garrote [33, 34]; a Bayesian framework that con-
veniently allows us to integrate a priori information and
in recent work has shown promise for spatio-temporal
source reconstruction [35, 36]. For synthetic and real
EEG data, we further show that the inferred forward
models lead to source reconstructions of similar qual-
ity to those obtained via the unused MRI scan of the
subject. This is evidence that adequate forward mod-
els can be estimated without access to subject-specific
anatomical or biophysical information. As the proposed
method does not require structural scans of the new sub-
ject or the skull:brain conductivity ratio, we believe that
the technique will enable a wider applicability of EEG-
based imaging.

2. Methods

In the following section, we describe the first step
towards a completely data-driven approach for forward
model inference, also visualized in Fig. 1.

We generate a corpus of forward models from struc-
tural scans of 16 participants combined with differ-
ent skull:brain conductivity ratios to produce multi-
ple forward models for each subject. We represent
the information of this forward model corpus in a
low-dimensional subspace representation using princi-
pal component analysis (PCA) [37]. PCA representa-
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Figure 1: The process of creating forward models and their projec-
tion to PCA space. (a) For each of the 16 subjects, a T1-weighted
image is used to construct a forward model. (b) The forward model is
here constructed using a three-layered BEM head model (scalp-skull-
brain). For each subject, 100 forward models are created with varying
skull:brain conductivity; from 1:250 to 1:15. (¢) 2D PCA projection
of the forward models. The test subject is withheld from the PCA
representation.
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tion is a generative model (a probability density func-
tion [38]) and it can therefore be used to simulate or
predict new forward models, effectively interpolating in
the corpus of forward models. Based on the suggested
data-driven representation, it is possible to propose or
actively search for a potential forward model for a per-
son not included in the database. We suggest to infer
a forward model for a new subject by using this per-
son’s recorded EEG signal to optimize an estimate of
the model evidence, visualized in Fig. 2 and expressed
in equation A.6. The main steps in the proposed forward
model inference pipeline thus include:

o Generate a corpus of P forward models represen-
tative of variations in head geometry and conduc-
tivities. The corpus is contained in a matrix of size
P x (N - K) when defining each forward model to
map N cortical sources to K electrodes.

e Decompose the forward model corpus using PCA
and create a low-dimensional representation of for-
ward models.

e For a new subject, search for a forward model in
the PCA representation which optimizes the free
energy given the EEG data and the source model.
The result is a personalized forward model and a

Amplitude [v] 7
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Figure 2: The free energy summarizing the ability of a model to de-
scribe the data and its complexity. We calculate the free energy based
on the inference scheme proposed in the Variational Garrote (VG).
Formally, the free energy in VG expresses the Bayesian combination
of data fit (difference in true and estimated signal) which considers
the estimated source density and the forward model, and complexity
through a sparsity-promoting prior on the source density.

source distribution for the new subject.

These steps are more carefully described below together
with the data used for validating the method.

2.1. Neuroimaging Data

We apply the EEG recordings and structural MRI
data from 16 healthy subjects (F=7, M=9, age=23-31
years) from the multimodal dataset acquired by R. Hen-
son and D. Wakeman [39, 40]. Functional MRI (fMRI)
and MEG were also recorded but not applied in this
study. The EEG was recorded with 70 electrodes and
the structural MRIs are T1-weighted images recorded
on a Siemens 3T Trio. The study was originally con-
ceived and carried out to investigate the mechanisms
of face perception [41]. We preprocess the EEG data
following the SPM8 (http://www.fil.ion.ucl.ac.
uk/spm) [18] framework through marLaB (Mathworks
Inc.) scripts provided by R. Henson. The data are thus
filtered and averaged across epochs within conditions.
Finally we create the differential event-related potential
(ERP) contrasting ‘faces’ versus ‘scrambled faces’ for
one test subject. We thus follow the common approach
in investigating the face-evoked response, i.e. by creat-
ing the differential response and thereby strengthening
the face-sensitive signal [42, 43].

2.2. Forward Modeling

We employ the widely used software pack-
ages, SPMS8 [18] and FieldTrip (http://www.
fieldtriptoolbox.org/) [19] to create a database
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2.3 Forward Model Representation

of BEM forward models. The structural MRI of each
subject is thus spatially normalized to a template
(MNI) brain. The inverse of this transformation is
used in warping a template/canonical mesh into a
subject-specific mesh on which a forward model is
generated [44]. Each of the 16 participants’ anatomical
MRI scans (Fig. la) are thus segmented into scalp,
skull and brain (Fig. 1b). The BEM, in the ‘bemcp’
implementation [45], is used to create the forward
models with scalp, skull and brain conductivities cor-
responding to [1, ¢, 1] - 0.33, where ¢ is drawn from a
uniform distribution between 1/250 and 1/15. For each
subject, 100 samples are drawn and combined with
the subject’s segmented skull layer thus generating in
total 1,600 forward models covering the relevant range
of skull:brain conductivity ratios [28]. In contrast,
SPM8 fixes the conductivities to [1,1/80,1] - 0.33.
Co-registration to the EEG electrodes is obtained
through fiducials placed on the nasion and the left and
right pre-auricular, and through headshape points. The
cortex mesh is set to consist of 8196 vertices.

Although commonly used, the applied procedure to
generate forward models impose several simplifying as-
sumptions. For example, the head is modeled as con-
sisting of only three head layers and each of these have
isotropic conductivity. According to several studies, a
layer modeling the cerebrospinal fluid (CSF), for exam-
ple, should be included in the head model to obtain ac-
curate EEG imaging [24, 46]. However, a recent study
shows that the omission of a CSF layer can be partly
compensated for by adjusting the skull conductivity ap-
propriately [20]. As we do not fix the skull:brain con-
ductivity ratio in our study, but instead approximate it
based on the EEG data, the influence of the missing
CSF is expected to be reduced. Anatomical compart-
ments with anisotropic conductivities can be achieved
by replacing the BEM head model with finite element
method (FEM) estimations [6]. The BEM head model
is, however, often applied because of its low complex-
ity and high accessibility. A further simplification is the
assumption that the cortical folding of a subject can be
accurately described by a nonlinear warping of a tem-
plate model, as implemented in SPMS8. The benefit of
this method is the existence of a direct one-to-one corre-
spondence of brain locations between subjects. Akalin
Acar et al. furthermore showed that a subject-specific
warping of a template head model provides reasonable
source recovery of scalp maps generated by a more re-
alistic BEM forward model [24]. Note that these for-
ward models did not assume fixed dipole orientations,
as we do in this study. As we are aiming at generat-
ing forward models personalized to subjects for whom

the head geometry is unknown, these simplifications are
considered reasonable. We finally note that it is indeed
possible to implement more realistic forward models in
the proposed framework.

2.3. Forward Model Representation

Using PCA [37], we obtain a low-dimensional rep-
resentation of the corpus of forward models (Fig. 1c).
Each forward model is a 70 x 8196 matrix, which we
reshape to produce vectors with 573,720 elements. For-
ward models are removed from the corpus if their /,-
norm deviates by more than two standard deviations
from the average l,-norm. Of the 1,600 forward models,
49 are excluded and the matrix L € RI31X573.720 thyg
contains the forward models used for the PCA analysis.
Eigendecomposition is applied to the inner product of
the corpus (where the average forward model has been
subtracted), i.e.

¥ = LLT = UAU™, (1)

where U € RI!3!XI551 contains the eigenvectors and
A € RXIST contains the eigenvalues in the diago-
nal. L can be decomposed by L = UAY?VT mean-
ing that VT = (UAY?)"'L = A-Y2UTL, where V €
R373.720x1351 * A new lead field is given by Apew = WV,
where w is a row vector containing the position of a for-
ward model in the PCA space. For visualization pur-
poses, we create a two-dimensional PCA representa-
tion. The new basis V € R>3729< ig thus formed by
the two principal components explaining most variance,
corresponding to the two first columns of the eigenvalue
sorted matrix V. A forward model in PCA position
w € R™2 can therefore be generated by Apew = wVT.
To establish an unbiased estimate of the goodness, we
invoke a leave-one-out cross-validation setup, i.e. we
estimate the forward model PCA representation on all
but one test subject.

The 2D projections of the forward models using the
two first principal components are seen in Fig. lc.
While the horizontal dimension in Fig. lc is clearly
dominated by conductivity ratio differences, the inter-
pretation of the vertical dimension is less clear. It there-
fore appears to be a composite of both inter-individual
anatomical differences and the conductivity ratio. Sub-
ject 16, for example, has a bigger sized brain than the
other subjects, as seen in Supplementary Fig. 1, and is
also seen to be something of an outlier in the vertical
dimension of the PCA representation. However, brain
size alone does not explain the subjects’ locations in the
PCA space in Fig. 1c. The two first principal compo-
nents explain 73% of the forward model variance, while
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2.5 Synthetic EEG Data

99% of the variance can be explained by the first 18
principal components.

We base our forward model inference on a measure
of statistical goodness. Here, we use the free energy
(see Fig. 2), which provides a bound on the evidence in
Bayesian modeling [47]. When optimized, the free en-
ergy can thus be used to quantify the evidence. As seen
in Fig. 2, the free energy provides optimal data fit while
penalizing complexity. We optimize the free energy
with respect to both the source configuration as well as
the forward model representation, as similarly done in
[48]. We apply a source localization procedure based on
a statistical model whose prior favors sparse solutions;
the so-called Variational Garrote [33, 34, 35, 36], de-
scribed in Appendix A. The source localization proce-
dure is contingent on a single regularization parameter:
the prior sparsity level. Sparsity is a common assump-
tion, employed in estimating ill-posed inverse solutions,
and widely applied in EEG imaging [12, 39, 28, 42]. In
EEG, the sparsity assumption is motivated by the appar-
ently sparse focal nature of brain activation [16].

Cross-validation is a general technique used to esti-
mate how well a model generalizes to new data, and for
independently sampled data, the performance estimator
is unbiased [49]. Here, we apply cross-validation at two
levels: At the forward model level to optimize statisti-
cal regularization parameters (the sparsity level which
determines the number of active dipoles), and at the
corpus level to infer the forward model for a hold-out
subject, as previously mentioned. For the first level of
cross-validation, we split the EEG data into four folds
by partitioning the 70 EEG electrodes (Fig. 3a). Each
fold contains 17-18 electrodes and covers the surface of
the scalp. While, importantly, the overall performance
estimator is unbiased, the correlations among electrode
signals imply that our parameter estimation step may be
suboptimal.

2.4. Sparsity Estimation

In our analysis, the optimal forward model is the one
which yields lowest free energy, as defined in eq. (A.6).
The free energy, however, depends on both the unknown
forward model as well as on the sparsity parameter 7.
The latter is estimated using four-fold cross-validation
at 250 randomly selected training forward models and
interpolated across the PCA space using kernel regres-
sion [50] with a Gaussian kernel. The bandwidth of the
kernel specifies the smoothness with which vy changes.
In order not to depend on a particular choice of the band-
width, we consider a uniform prior on this parameter,
which is marginalized numerically such that the free en-
ergy is evaluated and then averaged across a discrete set

a b
3 T 20 [ pr Data generating]
- Tost subject forward model
. o a® 079 woak . % /o o
" "Poene®® -+
sseiiieest @y
P ®0c0e ® #
0o e @ W &
o ©909aeae
.
@n ™ , Strong _ .
e oY P ,w.'.n o “ 601 Best performing ol .
e ®g % @ L training subject & S .

. o
z 0 True positive 0.02 0.04 0.06
False positive Skull:brain conductivity ratio

Figure 3: Estimation of optimal sparsity. (a) Partitioning of the 70
EEG electrodes into four folds. Each fold is represented by one color.
(b) The sparsity levels obtained by cross-validation using the mean
squared error (MSE) between the true and predicted signal. For visu-
alization purposes, we only show the results for the test subject (red
crosses) and the non-test subject who obtained best F'|-measure (blue
dots), see also Fig. 5. The black cross indicates the data-generating
forward model. The estimated sparsity levels were smoothed (full
lines) with respect to conductivity ratio within each subject.

of bandwidth values (from 0.25 to 3 in 12 steps). How-
ever, for the simulation studies we investigate only one
bandwidth. For the database forward model prediction,
we smooth the sparsity within each subject across con-
ductivity ratio, see Fig. 3b. The smoothing is in general
performed to reduce the noise introduced by the coarse
four-fold cross-validation procedure.

2.5. Synthetic EEG Data

In the first experiment we construct synthetic data by
positioning two bilateral sources in the occipital lobes
(Fig. 4a-b). In the second simulation study we addition-
ally plant two frontal sources, (Fig. 6a-b). The sources
in the two studies have the temporal dynamics of one or
two pairs, respectively, synchronous sine waves across
25 time samples. Assuming a sampling frequency of
200 Hz, the simulated sine waves have a frequency of
approximately 15 Hz. The created source distribution is
projected to 70 electrodes through the forward model of
a test subject with a specific skull:brain conductivity ra-
tio. We add noise to yield a signal-to-noise ratio (SNR)
of 5dB.

3. Results

Our analysis of predictive forward model representa-
tions was based in part on simulated data and in part on
real EEG data. For both simulated and real EEG data,
we used the forward models previously described.

To validate the predicted 2D PCA forward models,
we calculated selected summary data; the matrix coher-
ence [51] and the condition number [52], see Table 1.
High correspondence between actual and predicted for-
ward models was found for both measures. In further
studies we found that, while increasing the number of
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3.2 Performance of 2D PCA-generated forward models - Simulations

Real Predicted
I—coh [x107%] 2.7(0.95-5.5) 2.6(1.0-4.1)
K 97.3(59.2-795.6) | 109.4 (61.5-281.1)

Table 1: Matrix properties of the real and PCA-predicted forward
models. Median (and full interval) of the coherence (coh) and condi-
tion number (k) are shown. As all forward models approach a coher-
ence of 1, we show 1 minus the coherence. Note that by excluding the
‘outlier subject’ (subject 16) the maximum condition number among
the real forward models was 151.

True c Estimated
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Figure 4: Source distributions of the planted activity and as estimated
using the free energy-optimal forward model. (a) Posterior view of
the inflated brain showing the locations of the two planted sources.
The locations of the estimated sources were identical to these. (b) The
real and (c) estimated time courses of the two sources.

principal components yielded higher similarity between
the predicted and real forward models, it did not neces-
sarily increase source recovery accuracy (Supplemen-
tary Fig. 2-4).

3.1. Performance of database forward models - Simu-
lations

As a validation step, we investigated whether, from
all of the 1,600 corpus forward models, the free en-
ergy was able to recover an adequate forward model.
The simulated EEG signal for this study arose from two
active sources, see Fig. 4a. In Fig. 3b, we show the
estimated sparsity levels and the smoothed values for
the test subject and the best-performing non-test subject
across skull:brain conductivity ratios.

The forward model with the lowest free energy was
found to be from the test subject and had a conductivity
ratio very similar to the data-generating forward model
(Fig. 5a). This choice of conductivity ratio was fur-
ther supported by also having low cross-validation error
(Fig. 5b). However the cross-validation error seemed to
be more unspecific and did not have an as clearly de-
fined minimum as the free energy. The geometric local-
ization error (Fig. 5c¢) and a source retrieval index, viz.
the F-measure [53], balancing the source localization
precision and recall scores (Fig. 5d), attained their opti-
mal values at the conductivity ratio with lowest free en-
ergy. Furthermore, the best-performing training subject
also had a subset of forward models leading to perfect
source reconstruction. Using the free energy-optimal
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Figure 5: Forward model prediction among the database test and train-
ing subjects for simulated data. The source signal in Fig. 4a-b was
projected to sensor space with the forward model indicated by the
black cross. The smoothed sparsity levels in Fig. 3b were applied to
the Variational Garrote in combination with the forward models of
the test subject (red) and the training subjects (averaged in black, s.d.
in gray, training subject with highest F|-measure in blue). (a) The
free energy computed on all electrodes. (b) The normalized cross-
validation MSE including zoom inset. (c) The Euclidean localization
error summed across the two sources. (d) The F'{-measure.

forward model from the set of test and training sub-
jects, we obtained a source distribution with the correct
source locations, and temporal dynamics very similar to
the true activity (Fig. 4).

In our example, the consequence of choosing a wrong
conductivity ratio when having a forward model based
on the subject’s structural scan is a summed localization
error of up to 30 mm (Fig. 5¢), i.e. an average error of
15 mm. This result is in line with previous studies [24].

3.2. Performance of 2D PCA-generated forward mod-
els - Simulations

Next, we assessed the ability of the free energy to
optimize over the PCA-predicted set of forward mod-
els, i.e., not restricting ourselves to the actual database
of forward models. The simulated source activity is
seen in (Fig. 6a-b). The PCA-projected forward mod-
els (Fig. 1c) of the training subjects spanned our search
space (Fig. 7 and Supplementary Fig. 5). Note that we
withheld the forward models of the test subject from the
PCA decomposition.

The lowest free energy (Fig. 7a) matched the opti-
mal region of the localization error (Fig. 7b) and F-
measure (Fig. 7c). The sources localized with the for-
ward model having the lowest free energy were thus ac-
curately placed and additionally had similar temporal
dynamics to the truth (Fig. 6¢). In Table 2, we com-
pare the performance of the recovered forward model
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Figure 6: Source distributions of the planted activity and as estimated using the free energy-optimal forward model. (a) Posterior view of the
inflated brain showing the locations of the four planted sources. The locations of the estimated sources were identical to these. (b) The real and (c)

estimated time courses of the four sources.
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Figure 7: Search for the optimal forward model in the 2D PCA space created by the training subjects; simulated EEG data (Fig. 6). A test forward
model (white circle) from the withheld test subject was used to generate the test EEG data. The 2D PCA space of forward models wherein (a) the
free energy, (b) the localization error and (c) the Fj-measure were calculated. The forward models of the training subjects (black) and test subject

(gray) are overlayed. Minimum free energy was found at the white cross.

with that of template and subject-specific forward mod-
els. The forward model having the correct anatomy and
conductivity is seen to perform similarly to the inferred
forward model. Assuming template conductivity ratio
performed reasonably well, while also using template
anatomy severely impaired the performance.

The inference pipeline was investigated on five more
subjects. In general, we found that a reasonable for-
ward model could be inferred when the requested test
forward model was in the span of the training forward
models (Supplementary Figs. 6-10). For three subjects,
the source densities estimated with the inferred forward
models were of similar high performance as the true
forward models (Supplementary Tables 2-4). For the
fourth subject, one of the sources was not retrieved by
the predicted forward model (Supplementary Table 5).
Finally, when using the ‘outlier subject’ as the test sub-
ject, we were only able to recover one of the simulated
sources (Supplementary Table 6).

3.3. Performance of 2D PCA-generated forward mod-
els - Real EEG data

Finally, we demonstrate the forward model inference
pipeline on a real EEG dataset. We used the differential
EEG response of seeing faces versus scrambled faces
stemming from EEG data recorded from the same test
subject as used in the previous experiments. Again we
created a 2D PCA space using the remaining 15 sub-
jects on which we investigated the free energy, cross-
validation error profile and the sparsity profile (Fig. 8a-
c; see additionally Supplementary Fig. 11).

The free energy-optimal forward model for the left-
out-subject’s EEG data provided a source distribution
(Fig. 8d) with a maximal response at 160 ms, cor-
responding to the N170 face-related EEG component
[41]. The estimated sources were bilaterally located
and four of the dominating sources were in the vicin-
ity of the O/FFA (Fig. 8d, upper panel). The recov-
ered face perception locations were thus consistent with
previous EEG/MEG [43], as well as fMRI [54] stud-
ies. We further compared our results to the source den-
sities obtained when applying a forward model built
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Figure 8: Search for the optimal forward model; real EEG data recorded from the test subject. (a-c) The 2D PCA space created by 15 training
subjects, whose projections are seen in black. The test subject is seen in gray. The minimum free energy is indicated by the white cross and
minimum MSE by a red cross. Due to uncertainty concerning the bandwidth controlling the smoothing of the sparsity, several bandwidths were
applied; the averages across these are shown. (d-f) The source densities as estimated by the forward model yielding minimum free energy in the
PCA space and the canonical forward model with and without adaptation to the test subject’s sSMRI. Upper panel: Glass brain representation of the
recovered sources; spatial extension and color intensity reflect the relative activity strength. Mid panel: 3D representation of the estimated source
localization visualized on an inflated cortex. The two strongest sources are indicated in blue and red. Lower panel: The temporal dynamics of the
two strongest sources; the remaining sources are shown in gray.
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Table 2: Performance of the forward model inferred by lowest free energy (white cross in Fig. 7) and forward models constructed from
template/subject-specific head geometry and skull:brain conductivity ratio (o). Four sources were planted, one in each half hemisphere, i.e.

left/right and posterior/anterior.

TCalculated as the Euclidean distance between a true source and the strongest estimated source in the same half hemisphere.

¥ Calculated as the sum of the variational mean, m (see Appendix A).

Optimized Template head, Subject head, Subject head,
forward model template o template o true o

Free energy 2994 3192 3057 2956
MSE 0.63 0.55 0.93 0.61
Fi-measure 1 0 0.44 0.5
Localization error

Left posterior 0 mm 16.7 mm 15.1 mm 0 mm

Right posterior 0 mm 18.4 mm 6.0 mm 6.0 mm

Left anterior 0 mm 19.7 mm 0 mm 5.7 mm

Right anterior 0 mm 23.7 mm 0 mm 0 mm

Sum 0 mm 78.5 mm 21.1 mm 11.7 mm
Estimated number of active sources* 4.0 4.0 5.1 4.0

using the MRI scan of the subject and the SPM8 de-
fault skull:brain conductivity ratio 1:80 (Fig. 8e), and
obtained when using the canonical/template forward
model (Fig. 8f). The personalized canonical forward
model provided a source distribution similar to the one
of the PCA forward model, however, the estimated
sources were less symmetrically located (Fig. 8e, up-
per panel). The template forward model yielded even
less hemispheric symmetry and more anteriorly located
activity (Fig. 8f, upper panel). The typical face-related
N170 peak was recovered with all three forward models
(Fig. 8d-f, lower panel).

4. Discussion

Functional brain imaging by EEG source localization
poses a highly ill-posed inverse problem due to the low
spatial resolution of the sensors and the high number
of potential locations of the cortical sources. There is
a broad consensus that forward model uncertainty is an
important limiting factor for EEG imaging by source re-
construction [17, 24, 55, 56, 57, 58, 59]. Our results
add quantitative evidence to this view, both in terms of
the tissue conductivity ratio, which is the main source
of uncertainty if the brain topography is correct, and
more broadly when both anatomy and conductivities
are unknown. This evidence is our main motivation for
proposing a data-driven inference scheme for the for-
ward model: Is there a way to reduce the uncertainties
inherent in conventional electrophysiological tools for
estimating forward models, i.e. the uncertainty of brain
topography and conductivity distributions?

Previously, attempts have been made to achieve point
estimates of the conductivity ratio or to model it as
a random variable establishing a posterior distribution
that encodes the uncertainty of the forward models.

However, in the former case the ratio is estimated from
a discrete set of specific values [55]. In the latter study
validation was found to be challenging in real data, and
it was suggested that in future work, the validation could
be assisted by active conductance mapping using elec-
trical impedance tomography (EIT) [56]. These tech-
niques, however, introduce a new set of highly ill-posed
inverse problems. While we here focus on forward
model inference in the setting of EEG, we note that
the methods developed may also assist other important
tools, such as transcranial magnetic stimulation, direct-
current stimulation [57], and indeed EIT.

As aroute of reducing forward model uncertainty, we
proposed a data-driven mechanism for building a rep-
resentation of forward models based on the variability
expressed in a large corpus of models. This approach
represents the database as a relatively low-dimensional
manifold, here chosen to be a two-dimensional lin-
ear subspace. Equipped with an appropriate probabil-
ity density function, the representation allowed us to
simulate new forward models and search for the best-
suited forward model for a specific EEG dataset, with-
out involving the subject’s anatomical data. We showed
that the predicted forward models based on the new
representation share important characteristics with the
database models. We opted for a rather simple, two-
dimensional representation, for the sake of visualiza-
tion. However, the complexity of the forward model
representation can be inferred by statistical means: the
more data, the more complex the forward model repre-
sentation [38].

To evaluate the goodness of a given forward model
for a specific EEG dataset, we applied the Varia-
tional Garrote [34]; a Bayesian sparsity-promoting
source reconstruction approach producing two mea-
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sures of goodness: the ‘free energy’, a measure of the
model evidence, and cross-validation error based on
the scalp electrode measurements. These measurements
were themselves validated in simulation experiments in
which we showed that the free energy identifies forward
models with small source localization errors and general
high accuracy. Future work will investigate whether the
conceptual approach can also be used with other infer-
ential frameworks. The inverse solvers implemented in
SPM, for example, also provide estimates of the model
evidence [60].

The possibility of effectively recovering important as-
pects of the forward model directly from EEG data us-
ing a data-driven approach is the main novelty of our
method. In the state-of-the-art approach [26], the opti-
mal model is selected within a limited set of candidate
models, all based on the given subject’s anatomical data,
i.e. requiring an MRI or CT scan. We presented evi-
dence that our approach can infer the forward model for
a test subject not included in the database. The simula-
tion study indicated that, by optimizing the free energy,
we can identify a set of forward models that have opti-
mal source retrieval. Thus, our results have immediate
consequences for studies for which the brain topogra-
phy is not available, e.g. because MRI or CT scans are
not recorded, or because available scans do not provide
enough detail. Our method also has potential to be bene-
ficial for specific patient groups for which an MRI or CT
scan is practically/ethically unobtainable, e.g. for pa-
tients in pain, with claustrophobia or other factors mak-
ing it difficult for the subject to remain immobile. Fur-
thermore, the EEG is often recorded with the subject be-
ing in a different position than when the structural scans
were recorded, and this could misrepresent the actual
propagation paths from source-to-scalp measures [61].
This could potentially be remedied by adapting the for-
ward model using the free energy, as similarly suggested
for inferring the head position in MEG acquisition [31].
Finally, one may speculate whether the approach can be
generalized to a dynamic scenario in which the subject
is in motion and hence the brain position relative to the
skull and scalp varies, calling for a dynamic forward
model.

The dataset [40] from where we obtained EEG and
the anatomical MRI scans additionally contains MEG
and fMRI datasets for all 16 subjects for the face-
recognition task. This paradigm has previously been
used to test EEG and MEG source reconstruction meth-
ods [26, 59, 42] and thus allowed us to test the forward
model inference hypothesis. The functional data were
acquired to identify the networks involved in human-
face processing, and consist of randomized presenta-

tions of human faces and scrambled faces. On the differ-
ential EEG response, i.e. the signal mean difference for
the two conditions, we found activation located in the
vicinity of the left and right O/FFAs, showing the face-
related N170 component [41]. The most direct com-
parison can be made with a multi-modal fusion study
[43], which compared and fused MEG and EEG data
to investigate the spatial location of sources and the re-
sponse dynamics. When analyzing MEG data alone, ac-
tivations in the vicinity of the left and right FFAs were
found, while when analyzing the EEG data, activations
in the vicinity of the OFAs were found. Combining both
MEG and EEG modalities made it possible to repro-
duce the activation in all four face areas, as also found in
fMRI studies [54]. Our results are thus consistent with
the EEG/MEG-combined findings. It is our experience
that assuming spatial coherency improves source recon-
struction further, e.g. by using spatial basis functions
[42].

While the present study gives evidence that it is in-
deed possible to infer forward models based on a sub-
ject’s EEG data and an external database of general
anatomical information, it should be extended in sev-
eral directions. First, we aim at making the manifold
description richer by using more realistic head models
[57] and representing the information in higher dimen-
sions. The latter would hinder a grid search for the opti-
mal forward model due to the ’curse of dimensionality’
and optimization techniques such as Bayesian schemes,
e.g. BayesOpt [62] or Metropolis search combined with
BMA [48] would become necessary. The database can
be further extended by adding head geometries for more
subjects using large anatomical scan databases such
as the Biomedical Informatics Research Network [63].
The applied database contains healthy subjects of simi-
lar age and the generated forward model representation
is therefore not expected to generalize directly to very
dissimilar subject groups. However, through the cre-
ation of a large and comprehensive database, we would
potentially be able to infer the diverse and complex head
geometry that influences the measured EEG signal and
thereby obtain better source localization results for a
wide group of subjects. By expanding the ability of
EEG to act as a stand-alone brain imaging device, the
presented strategy therefore has potential to play a key
role in understanding the mechanisms of cognitive pro-
cesses.
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Appendix A. The Variational Garrote

As also described earlier, there exists a linear relationship between the cortical sources and scalp EEG [64]. The
mathematical relation is given by the forward model A € R¥* which maps N dipolar sources (X) to K EEG electrode
signals (Y) in T time samples, i.e.,

Y =AX +¢, (A.D)

where € is noise.

We chose to perform source reconstruction using a modified version of a sparsity-inducing Bayesian-inference
scheme; the Variational Garrote (VG) [33, 34]. VG has been adapted to solve the EEG inverse problem in a multiple-
measurement vectors framework, called time-expanded VG (teVG) [36]. The teVG (and VG) enforces a ’spike-and-
slab’-like representation [65] by including a binary variable for each potential source, thus encoding whether the
source is active or not. The problem to solve is now

N
th = Z Aknsant + €, €n ~ N(Ovﬁ_l)’ (AZ)

n=1

eXp (7S11)

1 +exp(y)
rameter y controls the sparsity level. Note that making s independent of time samples corresponds to an assumed fixed

support for all time samples. The solution scheme proposed by Kappen et al. [34] is based on Bayesian inference by
maximizing the following posterior probability

where s, € {0, 1} which is assigned the prior p(sly) = ]—[nN:1 p(s,ly) where p(s,ly) = [34]. The hyperpa-

p(s, X, BID, y) o< p(sly)p(Dls, X, B), (A.3)

where D = {A,Y} and p(X, ) is assumed flat. The solution is non-trivial and Kappen et al. suggest marginalizing
over s and employing a variational approximation. When taking the logarithm

log Z Psky)p(DIs, X, B) = log Z e p<s|y>p<D|s X.5) (A4)

and using Jensen’s inequality, a bound on the approximation is recovered (reproduced from [34])

q(s)

4(s)
1ogz o5 PEPDIs X ) > = ZQ( o8 PO X B

—F(g,X.p), (A.5)

where F(q,X, ) is the variational free energy. The variational approximation is defined as g(s) = HnN=1 gn(sn), here
qn(sy) = mysy+(1—my)(1—s,) [34]. The parameter m,, is the variational mean and can be interpreted as the probability
of s, being active, and therefore has values between 0 and 1. In order to obtain a tight bound —F(g, X, 8) should be
maximized or equivalently F(q, X, 8) minimized. Posed in a ‘dual formulation’ the free energy is

ﬂ T K
2_ + 5 Z Z(Zkt th)

t=1 k=1

Fm,X,8,Z, 1) = —— log

é

2
T N
DUl = m) X — Z my + Nlog(1 +exp(y)) (A.6)
t=1 n=1 n=1
K

)
N
+ 3 (mylog(my) + (1 = my) log(1 = my) + Z > (zk, Z m mAkn).

n=1 t=1 k=1

Here, y is the covariance matrix of the forward model A. The terms A (Lagrange multipliers) and Z;, = nyzl M XnAn
both stem from the dual formulation. Finally y controls the sparsity level and is found through cross-validation [34].
The remaining parameters are found by equating the partial derivatives with zero and solving the resulting equation
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set. The free energy is seen to be determined by the data fit between the observations and their expected values, and
the model priors. The free energy thus considers both the proposed forward model and the source distribution.

Originally, the solution was obtained through fixed-point iterations, which had a computational complexity that
scales quadratically with the number of electrodes and linearly with the number of sources; thus computation time
was relatively low [34]. Parameter updating was further improved by using gradient descent [66]; we adopted the
same scheme in this work. MATLAB code implementing teVG is available at https://github.com/STherese/VG_
inverse_solvers.
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